Hipótesis de Riemann

Parte real (rojo) y parte imaginaria (azul) de la línea crítica Re(s) = 1/2 de la función zeta de Riemann. Pueden verse los primeros ceros no triviales en Im(s) = ±14,135, ±21,022 y ±25,011.
Un gráfico polar de zeta, esto es, Re(zeta) vs. Im(zeta), a lo largo de la línea crítica s=it+1/2, con t con valores desde 0 a 34.

En matemática pura, la hipótesis de Riemann, formulada por primera vez por Bernhard Riemann en 1859, es una conjetura sobre la distribución de los ceros de la función zeta de Riemann ζ(s).[1]

La hipótesis de Riemann, por su relación con la distribución de los números primos en el conjunto de los naturales, es uno de los problemas abiertos más importantes en la matemática contemporánea.

Se ha ofrecido un premio de un millón de dólares por el Instituto Clay de Matemáticas para la primera persona que desarrolle una demostración correcta de la conjetura.[2] La mayoría de la comunidad matemática piensa que la conjetura es cierta, aunque otros grandes matemáticos como J. E. Littlewood y Atle Selberg se mostraron escépticos, si bien el escepticismo de Selberg fue disminuyendo desde sus días de juventud. En un artículo en 1989 sugirió que un análogo debe ser cierto para una clase mucho más amplia de funciones (la clase de Selberg).

Contenido

Definición

La función zeta de Riemann ζ(s) está definida de la siguiente manera:


\begin{align}
\zeta(s) & = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p\in\mathbb{P}} \frac{1}{1-p^{-s}} =\\
{} & =\left(1 + \frac{1}{2^s} + \frac{1}{4^s} + \frac{1}{8^s} + \cdots \right) \left(1 + \frac{1}{3^s} + \frac{1}{9^s} + \frac{1}{27^s} + \cdots \right) \cdots \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) \cdots
\end{align}

Para todos los números complejos s ≠ 1, se puede prolongar analíticamente mediante la ecuación funcional:

\zeta(s) = 2^s\pi^{s-1}\ \sin\left(\frac{\pi s}{2}\right)\ \Gamma(1-s)\ \zeta(1-s)
\!.

Ésta posee ciertos valores, llamados ceros "triviales" para los cuales la función zeta se anula. De la ecuación se puede ver que s = −2, s = −4, s = −6, ... son ceros triviales. Existen otros valores complejos s comprendidos entre 0 < Re(s) < 1, para los cuales la función zeta también se anula, llamados ceros "no triviales". La conjetura de Riemann hace referencia a éstos ceros no triviales afirmando:

La parte real de todo cero no trivial de la función zeta de Riemann es 1/2

Por lo tanto los ceros no triviales deberían encontrarse en la línea crítica s = 1/2 + i t donde t es un número real e i es la unidad imaginaria. La función zeta de Riemann, a lo largo de la línea crítica ha sido estudiada en términos de la función Z, cuyos ceros corresponden a los ceros de la función zeta sobre la línea crítica.

Historia

Riemann mencionó la conjetura, que sería llamada la hipótesis de Riemann, en su artículo de 1859 Sobre los números primos menores que una magnitud dada, al desarrollar una fórmula explícita para calcular la cantidad de primos menores que x. Puesto que no era esencial para el propósito central de su artículo, no intentó dar una demostración de la misma. Riemann sabía que los ceros no triviales de la función zeta están distribuidos en torno a la recta s = 1/2 + i t, y sabía también que todos los ceros no triviales debían estar en el rango 0 ≤ Re(s) ≤ 1.[3]

En 1896, Hadamard y de la Vallée-Poussin probaron independientemente, que ningún cero podía estar sobre la recta Re(s) = 1. Junto con las otras propiedades de los ceros no triviales demostradas por Riemann, esto mostró que todos los ceros no triviales deben estar en el interior de la banda crítica 0 < Re(s) < 1. Este fue un paso fundamental para las primeras demostraciones del teorema de los números primos.

En 1900, Hilbert incluyó la hipótesis de Riemann en su famosa lista de los 23 problemas no resueltos — es parte del problema 8 en la lista de Hilbert junto con la conjetura de Goldbach. Cuando se le preguntó qué haría si se despertara habiendo dormido quinientos años, remarcablemente Hilbert contestó que su primera pregunta sería si la hipótesis de Riemann había sido probada. La hipótesis de Riemann es el único problema de los que propuso Hilbert que está en el premio del milenio del Instituto Clay de Matemáticas.

En 1914, Hardy demostró que existe un número infinito de ceros sobre la recta crítica Re(s) = 1/2. Sin embargo todavía era posible que un número infinito (y posiblemente la mayoría) de los ceros no triviales se encontraran en algún otro lugar sobre la banda crítica. En trabajos posteriores de Hardy y Littlewood en 1921 y de Selberg en 1942 se dieron estimaciones para la densidad promedio de los ceros sobre la línea crítica.

Trabajos recientes se han concentrado en el cálculo explícito de la localización de grandes cantidades de ceros (con la esperanza de hallar algún contraejemplo) y en el establecimientos de cotas superiores en la proporción de ceros que puedan estar lejos de la línea crítica (con la esperanza de reducirlas a cero).

La hipótesis de Riemann y los números primos

La formulación tradicional de la hipótesis de Riemann oscurece un poco la importancia real de la conjetura. La función zeta de Riemann tiene una profunda conexión con los números primos y Hege von Koch demostró en 1901 que la hipótesis de Riemann es equivalente al considerable refinamiento del teorema de los números primos: Existe una constante C > 0 tal que

\left|\pi(x) - \int_2^x\frac{dt}{\ln(t)}\right|\le C\,\sqrt{x}\,\ln(x),

para todo x suficientemente grande, donde π(x) es la función contadora de primos y ln(x) es el logaritmo natural de x. Lowell Schoenfeld mostró que se puede tomar C = 1/(8 π) para todo x ≥ 2657.

Los ceros de la función zeta y los números primos satisfacen ciertas propiedades de dualidad, conocidas como fórmulas explícitas, que muestran, usando análisis de Fourier, que los ceros de la función zeta de Riemann pueden interpretarse como frecuencias armónicas en la distribución de los números primos.

Más aún, si la conjetura de Hilbert-Polya es cierta, entonces cualquier operador que nos dé las partes imaginarias de los ceros como sus valores propios debe satisfacer:

 \sum_{n}e^{-\beta E_{n}}=Tr[e^{-\beta \hat H}]=e^{u/2}-e^{-u/2} \frac{d\psi _{0}}{du}-\frac{e^{u/2}}{e^{3u}-e^{u}},

donde Tr es la traza del operador (suma de sus valores propios) , β es un número imaginario y ψ(x) es la Función de Chebyshov que nos suma el log(x) sobre los primos y sus potencias enteras, dicha fórmula es una conclusión de la 'fórmula explicita' de V. Mangoldt.[4] Varios operadores propuestos por C. Perelman, J. Macheca y J. Garcia, parecen corroborar los resultados de la conjetura de Hilbert sobre el operador, reproduciendo la parte imaginaria de los ceros.

Cálculo numérico

Valor absoluto de la ζ-function.
  • En el año 2004 Xavier Gourdon verificó la conjetura de Riemann numéricamente a lo largo de los primeros diez trillones de ceros no triviales de la función. Sin embargo esto no es estrictamente una demostración, numéricamente es más interesante encontrar un contraejemplo, es decir un valor de cero que no cumpla con que su parte real es 1/2, pues esto echaría por los suelos la validez de la conjetura.
  • Hasta el 2005, el intento más serio para explorar los ceros de la función-ζ, es el ZetaGrid, un proyecto de computación distribuida con la capacidad de verificar billones de ceros por día. El proyecto acabó en diciembre de 2005, y ninguno de los ceros pudo ser identificado como contraejemplo de la hipótesis de Riemann.

Véase también

Referencias

  1. Bombieri, Enrico (2000) (en inglés, PDF), The Riemann Hypothesis - official problem description, Clay Mathematics Institute, http://www.claymath.org/millennium/Riemann_Hypothesis/riemann.pdf, consultado el 21-02-2011  Reimpreso en (Borwein et ál., 2008).
  2. «The Millennium Prize Problems» (en inglés). Consultado el 21 de febrero de 2011.
  3. Riemann, Bertrand (1859). «Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse». Consultado el 29 de diciembre de 2008.
  4. Explicit formula http://www.wbabin.net/science/moreta8.pdf

Enlaces externos


Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Hipótesis de Riemann — La hipótesis de Riemann, formulada por primera vez por Bernhard Riemann en 1859, es una conjetura sobre la distribución de los ceros de la función zeta de Riemann ζ(s) y constituye uno de los problemas abiertos más importantes de las matemáticas… …   Enciclopedia Universal

  • Hipótesis generalizada de Riemann — La hipótesis de Riemann es una de las conjeturas más importantes de la matemáticas. Es un postulado sobre los ceros de la función zeta de Riemann. Existen varios objetos geométricos y aritméticos que pueden ser descritos por las llamadas… …   Wikipedia Español

  • Hipótesis de Lindelöf — En matemática, la hipótesis de Lindelöf es una conjetura formulada por el matemático finés Ernst Leonard Lindelöf (véase Lindelöf (1908)) sobre la tasa de crecimiento de la función zeta de Riemann en la línea crítica y que está implicada por …   Wikipedia Español

  • Función zeta de Riemann — ζ(s) en el plano complejo. El color de un punto s codifica el valor de ζ(s): Colores fuertes denotan valores cercanos a 0 y el tono codifica el valor del argumento. El punto blanco en s=1 es el polo de la función zeta; los puntos negros en el eje …   Wikipedia Español

  • Función Xi de Riemann — ξ(s) en el plano complejo. El color de un punto s codifica el valor de la función. Colores fuertes denotan valores cercanos a cero y el tono codifica el valor del argumento. En matemática, la la función Xi de Riemann es una variante de la función …   Wikipedia Español

  • Bernhard Riemann — Para otros usos de este término, véase Riemann (desambiguación). Bernhard Riemann Bernhard Riemann, 1863 Nacimiento …   Wikipedia Español

  • Número primo — Un número primo es un número natural mayor que 1, que tiene únicamente dos divisores distintos: él mismo y el 1. Se contraponen así a los números compuestos, que son aquellos que tienen algún divisor natural aparte de sí mismos y del 1. El número …   Wikipedia Español

  • Teorema de los números primos — En teoría de números el teorema de los números primos es un resultado sobre la distribución asintótica de los números primos. Contenido 1 Enunciado del teorema 2 Historia 3 Relación con la hipótesis de Riemann …   Wikipedia Español

  • Conjetura de Mertens — En matemáticas, la conjetura de Mertens fue una conjetura sobre el comportamiento de la función de Mertens cuando su argumento se incrementaba. Conjeturada como cierta por Franz Mertens en 1897, fue probado que era falsa en 1985. La conjetura de… …   Wikipedia Español

  • Anexo:Matemáticos importantes — En esta lista de matemáticos importantes se presenta una selección de matemáticos desde la antigüedad hasta el presente. La selección se orienta por los aportes científicos, utilizando como criterio para definir el grado de notoriedad la atención …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.