Entropía


Entropía
Para otros usos de este término, véase Entropía (desambiguación).
Escultura dedicada a la Entropía en los jardines centrales de la Universidad de Monterrey, México

En termodinámica, la entropía (simbolizada como S) es una magnitud física que permite, mediante cálculo, determinar la parte de la energía que no puede utilizarse para producir trabajo. Es una función de estado de carácter extensivo y su valor, en un sistema aislado, crece en el transcurso de un proceso que se dé de forma natural. La entropía describe lo irreversible de los sistemas termodinámicos. La palabra entropía procede del griego (ἐντροπία) y significa evolución o transformación. Fue Rudolf Clausius quien le dio nombre y la desarrolló durante la década de 1850;[1] [2] y Ludwig Boltzmann, quien encontró la manera de expresar matemáticamente este concepto, desde el punto de vista de la probabilidad.[3]

Contenido

Evidencias

Cuando se plantea la pregunta: "¿Por qué ocurren los sucesos en la Naturaleza de una manera determinada y no de otra manera?", se busca una respuesta que indique cuál es el sentido de los sucesos. Por ejemplo, si se ponen en contacto dos trozos de metal con distinta temperatura, se anticipa que finalmente el trozo caliente se enfriará, y el trozo frío se calentará, finalizando en equilibrio térmico. El proceso inverso, el calentamiento del trozo caliente y el enfriamiento del trozo frío es muy improbable que se presente, a pesar de conservar la energía. El universo tiende a distribuir la energía uniformemente; es decir, a maximizar la entropía.

La función termodinámica entropía es central para la segunda Ley de la Termodinámica. La entropía puede interpretarse como una medida de la distribución aleatoria de un sistema. Se dice que un sistema altamente distribuido al azar tiene alta entropía. Un sistema en una condición improbable tendrá una tendencia natural a reorganizarse a una condición más probable (similar a una distribución al azar), reorganización que dará como resultado un aumento de la entropía. La entropía alcanzará un máximo cuando el sistema se acerque al equilibrio, y entonces se alcanzará la configuración de mayor probabilidad.

Coloquialmente, puede considerarse que la entropía es el desorden de un sistema, es decir, su grado de homogeneidad. Un ejemplo doméstico sería el de lanzar un vaso de cristal al suelo: tenderá a romperse y a esparcirse, mientras que jamás conseguiremos que, lanzando trozos de cristal, se construya un vaso por sí solo.

Otro ejemplo doméstico: tenemos dos envases de un litro de capacidad que contienen, respectivamente, pintura blanca y pintura negra; con una cucharita, tomamos pintura blanca, la vertemos en el recipiente de pintura negra y mezclamos; luego tomamos con la misma cucharita pintura negra, la vertemos en el recipiente de pintura blanca y mezclamos; repetimos el proceso hasta que tenemos dos litros de pintura gris, que no podremos reconvertir en un litro de pintura blanca y otro de pintura negra; la entropia del conjunto ha ido en aumento hasta llegar a un máximo cuando los colores de ambos recipientes son sensiblemente iguales (sistema homogéneo).

La variación de entropía nos muestra la variación del orden molecular ocurrido en una reacción química. Si el incremento de entropía es positivo, los productos presentan un mayor desorden molecular (mayor entropía) que los reactivos. En cambio, cuando el incremento es negativo, los productos son más ordenados. Hay una relación entre la entropía y la espontaneidad de una reacción química, que viene dada por la energía de Gibbs.

Ecuaciones

Esta idea de desorden termodinámico fue plasmada mediante una función ideada por Rudolf Clausius a partir de un proceso cíclico reversible. En todo proceso reversible la integral curvilínea de \frac{\delta Q}{T} sólo depende de los estados inicial y final, con independencia del camino seguido (δQ es la cantidad de calor absorbida en el proceso en cuestión y T es la temperatura absoluta). Por tanto, ha de existir una función del estado del sistema, S=f(P,V,T), denominada entropía, cuya variación en un proceso reversible entre los estados 1 y 2 es:

 \Delta S = S_2 - S_1 = \int_1^2 \frac {\delta Q} {T}

Téngase en cuenta que, como el calor no es una función de estado, se usa δQ, en lugar de dQ.

La entropía física, en su forma clásica, está definida por la ecuación siguiente:

dS = \frac{\delta Q}{T}

o, más simplemente, cuando no se produce variación de temperatura (proceso isotérmico):

S_2 - S_1 = \begin{matrix} \cfrac{Q_{1 \to 2}}{T} \end{matrix}

donde S es la entropía, Q_{1 \to 2} la cantidad de calor intercambiado entre el sistema y el entorno y T la temperatura absoluta en kelvin).

Los números 1 y 2 se refieren a los estados iniciales y finales de un sistema termodinámico.

Significado

El significado de esta ecuación es el siguiente:

Cuando un sistema termodinámico pasa, en un proceso reversible e isotérmico, del estado 1 al estado 2, el cambio en su entropía es igual a la cantidad de calor intercambiado entre el sistema y el medio dividido por su temperatura absoluta.

De acuerdo con la ecuación, si el calor se transfiere al sistema, también lo hará la entropía, en la misma dirección. Cuando la temperatura es más alta, el flujo de calor que entra produce un aumento de entropía menor. Y viceversa.

Las unidades de la entropía, en el Sistema Internacional, son el J/K (o Clausius), definido como la variación de entropía que experimenta un sistema cuando absorbe el calor de 1 Julio (unidad) a la temperatura de 1 Kelvin.

Cuando el sistema evoluciona irreversiblemente, la ecuación de Clausius se convierte en una inecuación:

dS \ge \sum_{i=1}^n \frac{\delta Q_{TF_i}}{T_{FT_i}}

Siendo el sumatorio de las i fuentes de calor de las que recibe o transfiere calor el sistema y la temperatura de las fuentes. No obstante, sumando un término positivo al segundo miembro, podemos transformar de nuevo la expresión en una ecuación:

dS = {\delta \sigma}_p + \sum_{i=1}^n \frac{\delta Q_{TF_i}}{T_{FT_i}}

Al término σp, siempre positivo, se le denomina producción de entropía, y es nulo cuando el proceso es reversible salvo irreversibilidades fruto de transferencias de calor con fuentes externas al sistema. En el caso de darse un proceso reversible y adiabático, según la ecuación, dS=0, es decir, el valor de la entropía es constante y además constituye un proceso isoentrópico.

Cero absoluto

Sólo se pueden calcular variaciones de entropía. Para calcular la entropía de un sistema, es necesario fijar la entropía del mismo en un estado determinado. La tercera ley de la termodinámica fija un estado estándar: para sistemas químicamente puros, sin defectos estructurales en la red cristalina, de densidad finita, la entropía es nula en el cero absoluto (0 K).

Esta magnitud permite definir la segunda ley de la termodinámica, de la cual se deduce que un proceso tiende a darse de forma espontánea en un cierto sentido solamente. Por ejemplo: un vaso de agua no empieza a hervir por un extremo y a congelarse por el otro de forma espontánea, aún cuando siga cumpliéndose la condición de conservación de la energía del sistema (la primera ley de la termodinámica).

Entropía y reversibilidad

La entropía global del sistema es la entropía del sistema considerado más la entropía de los alrededores. También se puede decir que la variación de entropía del universo, para un proceso dado, es igual a su variación en el sistema más la de los alrededores:

\Delta S_{\rm universo} = \Delta S_{\rm sistema} + \Delta S_{\rm entorno} \,

Si se trata de un proceso reversible, ΔS (universo) es cero pues el calor que el sistema absorbe o desprende es igual al trabajo realizado. Pero esto es una situación ideal, ya que para que esto ocurra los procesos han de ser extraordinariamente lentos, y esta circunstancia no se da en la naturaleza. Por ejemplo, en la expansión isotérmica (proceso isotérmico) de un gas, considerando el proceso como reversible, todo el calor absorbido del medio se transforma en trabajo y Q=W. Pero en la práctica real el trabajo es menor, ya que hay pérdidas por rozamientos, por lo tanto, los procesos son irreversibles.

Para llevar al sistema, de nuevo, a su estado original hay que aplicarle un trabajo mayor que el producido por el gas, lo que da como resultado una transferencia de calor hacia el entorno, con un aumento de la entropía global.

Como los procesos reales son siempre irreversibles, siempre aumentará la entropía. Así como "la energía no puede crearse ni destruirse", la entropía puede crearse pero no destruirse. Podemos decir entonces que "como el Universo es un sistema aislado, su entropía crece constantemente con el tiempo". Esto marca un sentido a la evolución del mundo físico, que llamamos principio de evolución.

Cuando la entropía sea máxima en el Universo, esto es, exista un equilibrio entre todas las temperaturas y presiones, llegará la muerte térmica del Universo (enunciado por Clausius).

En el caso de sistemas cuyas dimensiones sean comparables a las dimensiones de las moléculas, la diferencia entre calor y trabajo desaparece, y por tanto, los parámetros termodinámicos como la entropía, temperatura, etc. no tienen significado. Esto conduce a la afirmación de que el segundo principio de la termodinámica no es aplicable a tales microsistemas, porque realmente no son sistemas termodinámicos. Se cree que existe también un límite superior de aplicación del segundo principio, de tal modo que no se puede afirmar su cumplimiento en sistemas infinitos como el Universo, lo que pone en controversia la afirmación de Clausius sobre la muerte térmica del Universo.

Interpretación estadística de la entropía

En los años 1890 - 1900 el físico austríaco Ludwig Boltzmann y otros desarrollaron las ideas de lo que hoy se conoce como mecánica estadística, teoría profundamente influenciada por el concepto de entropía.

Una de las teorías termodinámicas estadísticas (la teoría de Maxwell-Boltzmann) establece la siguiente relación entre la entropía y la probabilidad termodinámica:

S = k \cdot \ln \Omega

Donde S es la entropía, k la constante de Boltzmann y Ω el número de microestados posibles para el sistema (ln es la función logaritmo neperiano). La ecuación anterior es válida porque se asume que todos los microestados tienen la misma probabilidad de aparecer.

La célebre ecuación se encuentra grabada sobre la lápida de la tumba de Ludwig Boltzmann en el Zentralfriedhof (el cementerio central) de Viena. Boltzmann se suicidó en 1906, profundamente deprimido por la poca aceptación de sus teorías en el mundo académico de la época.[4]

El significado de la ecuación es el siguiente:

La cantidad de entropía de un sistema es proporcional al logaritmo natural del número de microestados posibles.

Uno de los aspectos más importantes que describe esta ecuación es la posibilidad de dar una definición absoluta al concepto de la entropía. En la descripción clásica de la termodinámica, carece de sentido hablar del valor de la entropía de un sistema, pues sólo los cambios en la misma son relevantes. En cambio, la teoría estadística permite definir la entropía absoluta de un sistema.

Cuando la energía es degradada, dijo Boltzmann, se debe a que los átomos asumen un estado más desordenado. Y la entropía es un parámetro del desorden: ésa es la concepción profunda que se desprende de la nueva interpretación de Boltzmann. Por extraño que parezca, se puede crear una medida para el desorden; es la probabilidad de un estado particular, definido aquí como el número de formas en que se puede armar a partir de sus átomos
Jacob Bronowski, El ascenso del hombre, Bogotá, Fondo Educativo Interamericano, 1979, p. 347, capítulo 10 "Un mundo dentro del mundo".

Relación de la entropía con la teoría de la información

Véase también: Entropía (información)

Recientes estudios han podido establecer una relación entre la entropía física y la entropía de la teoría de la información gracias a la revisión de la física de los agujeros negros. Según la nueva teoría de Jacob D. Bekenstein el bit de información sería equivalente a una superficie de valor 1/4 del área de Planck. De hecho, en presencia de agujeros negros la segunda ley de la termodinámica sólo puede cumplirse si se introduce la entropía generalizada o suma de la entropía convencional (Sconv) más un factor dependiente del área total (A) de agujeros negros existente en el universo, del siguiente modo:

S_{\rm tot} = S_{\rm conv} + \frac{kc^3}{4G\hbar}A
Donde, k es la constante de Boltzmann, c es la velocidad de la luz, G es la constante de la gravitación y \hbar es la constante de Planck racionalizada.

Los agujeros negros almacenarían la entropía de los objetos que engulle en la superficie del horizonte de sucesos. Stephen Hawking ha tenido que ceder ante las evidencias de la nueva teoría y ha propuesto un mecanismo nuevo para la conservación de la entropía en los agujeros negros.

Simplemente, al realizar un trabajo, se ocupa muy poca energía; la entropía se encarga de medir la energía que no es usada y queda reservada en un cuerpo.

Entropía y su relación con las termociencias

Ya que tenemos estos conocimientos previos de lo que es la entropía debemos aplicarlos a las termociencias, supongamos que tenemos un sistema termodinámico, es decir, algo donde se propague el calor, digamos un comal para hacer tortillas de harina, cuando el calor o la energía calorífica se propaga al comal, podemos decir que el comal está calentado por completo, pero estaríamos cayendo en un error monumental debido a que nunca habrá un equilibrio térmico perfecto, porque el comal está en contacto con el aire, y el comal está calentando al aire y el aire le roba calor al comal.

En realidad si pudiéramos de alguna forma observar con unas gafas especiales este sistema enclavado o ubicado que se está llevando a cabo en ese momento podríamos observar un desorden a nivel molecular o de partícula, podríamos ver u observar las partículas que componen al comal de un color encarnado mientras que las partículas del aire se van colorando a razón de que pasen por el comal.

Podremos ver también a nivel molecular un gran desorden de partículas del aire chocando unas con otras debido a la cantidad de calor que están ganando, es cuando se dice que la entropía aumenta en el sistema, alguna vez podría estar en equilibrio ese sistema, la respuesta sencillamente es no, debido a que se necesitaría calentar el aire de todo el planeta para que estuviera en equilibrio con el comal, y aún en esas condiciones no estarían en equilibrio debido a que habría que calentar el sistema circundante es decir todo el sistema solar para que el sistema en realidad estuviera en equilibrio y aún así no lo estaría porque habría que calentar todo el universo y hay que recordar que el universo está en continua expansión.

Historia de la entropía

El concepto de entropía desarrollado en respuesta a la observación de que una cierta cantidad de energía liberada de funcionales reacciones de combustión Siempre se pierde debido a la disipación o la fricción y por lo tanto no se transforma en trabajo útil . Los primeros motores de calor como Thomas Savery (1698), el Newcomen motor (1712) y el Cugnot de vapor de tres ruedas (1769) eran ineficientes, la conversión de menos de dos por ciento de la energía de entrada en producción de trabajo útil; una gran cantidad de energía útil se disipa o se pierde en lo que parecía un estado de aleatoriedad inconmensurable. Durante los próximos dos siglos, los físicos investigaron este enigma de la energía perdida, el resultado fue el concepto de entropía.

En la década de 1850, Rudolf Clausius establecido el concepto de sistema termodinámico y postula la tesis de que en cualquier proceso irreversible una pequeña cantidad de energía térmica δQ se disipa gradualmente a través de la frontera del sistema. Clausius siguió desarrollando sus ideas de la energía perdida, y acuñó el término "entropía". Durante el próximo medio siglo se llevó a cabo un mayor desarrollo, y más recientemente el concepto de entropía ha encontrado aplicación en el campo análogo de pérdida de datos en los sistemas de transmisión de información.

Véase también

Referencias

  1. Clausius, R. (1850). «Über die bewegende Kraft der Wärme». Annalen der Physik und Chemie 79:  pp. 368-397, 500-524. http://gallica.bnf.fr/ark:/12148/bpt6k15164w/f384.table. Consultado el 23 de septiembre de 2009. 
  2. Clausius, R. (1865). «Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie». Annalen der Physik und Chemie 125:  pp. 351-400. http://gallica.bnf.fr/ark:/12148/bpt6k152107/f369.table. Consultado el 23 de septiembre de 2009. 
  3. Bronowski, J. (1979). El ascenso del hombre. Alejandro Ludlow Wiechers/BBC, trad. Bogotá: Fondo Educativo Interamericano.
  4. Véase el capítulo 10, "Un mundo dentro del mundo", de El ascenso del hombre, de Jacob Bronowski. En [1] pueden verse, en inglés, los últimos minutos de ese capítulo.

Enlaces externos


Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Entropia — may mean:* Entropia Universe (formerly known as Project Entropia), a popular MMORPG style online virtual universe. * Entropia, Inc. (company), a defunct company that produced commercial distributed computing software. * Entropia (album), a music… …   Wikipedia

  • Entropia — bezeichnet: Entropia Universe, ein MMORPG Eine amerikanische Firma, die sich auf Verteiltes Rechnen spezialisiert hat Ein Album der Band Pain of Salvation Entropia, die lokale Niederlassung des Chaos Computer Club in Karlsruhe …   Deutsch Wikipedia

  • entropía — (Del gr. ἐντροπία, vuelta, usado en varios sentidos figurados). 1. f. Fís. Magnitud termodinámica que mide la parte no utilizable de la energía contenida en un sistema. 2. Fís. Medida del desorden de un sistema. Una masa de una sustancia con sus… …   Diccionario de la lengua española

  • entropía — Tendencia de un sistema a ir de un estado de orden a uno de desorden, lo que se expresa en física como la medida de la parte de calor o energía en un sistema termodinámico que no está disponible para realizar un trabajo. Diccionario Mosby… …   Diccionario médico

  • Entropia — est une revue semestrielle qui paraît depuis l automne 2006 aux éditions Parangon[1]. Elle est sous titrée Revue d étude théorique et politique de la décroissance . Chaque numéro donne un sujet de réflexion sur lequel divers auteurs prônant une… …   Wikipédia en Français

  • entropia — /entro pia/ s.f. [dal ted. Entropie, comp. del gr. en dentro e tropḗ rivolgimento, mutazione ]. 1. (fis.) [funzione di stato termodinamica, che può essere assunta a misura del grado di disordine di un sistema] ◀▶ sintropia. 2. (fig., non com.)… …   Enciclopedia Italiana

  • entropia — s. f. 1.  [Física] Medida da desordem de um sistema. 2.  [Física] Medida da quantidade de energia que não é convertida em trabalho mecânico. 3. Desordem ou imprevisibilidade.   ‣ Etimologia: francês entropie …   Dicionário da Língua Portuguesa

  • entropia — {{/stl 13}}{{stl 8}}rz. ż IIb, blm {{/stl 8}}{{stl 7}} w fizyce statystycznej i teorii informacji: miara nieokreśloności, nieuporządkowania; funkcjonał zależny od funkcji rozkładu prawdopodobieństwa (w teorii informacji) lub jedna z funkcji stanu …   Langenscheidt Polski wyjaśnień

  • entropía — sustantivo femenino 1. Área: física Magnitud termodinámica que expresa el grado de desorden molecular de un sistema …   Diccionario Salamanca de la Lengua Española

  • Entropía — (Del gr. entrope, vuelta.) ► sustantivo femenino 1 FÍSICA Magnitud termodinámica que indica el grado de desorden interno de un sistema. 2 SICOLOGÍA Medida que indica el grado de información no aprovechable de una fuente, en función del número de… …   Enciclopedia Universal


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.