Triángulos semejantes

Triángulos semejantes

Dos triángulos son semejantes si existe una relación de semejanza o similitud entre ambos.

Triángulos semejantes.png

Contenido

Introducción

Una semejanza es la composición de una isometría (o sea, una rotación y una posible reflexión o simetría axial) con una homotecia.En la rotación se puede cambiar el tamaño y la orientación de una figura pero no se altera su forma.

Por lo tanto, dos triángulos son semejantes si tienen similar forma.

En el caso del triángulo, la forma sólo depende de sus ángulos (no así en el caso de un rectángulo, por ejemplo, donde uno de sus ángulos es recto pero cuya forma puede ser más o menos alargada, es decir que depende del cociente base / altura).

Se puede simplificar así la definición: dos triángulos son semejantes si sus ángulos son iguales dos a dos.

En la figura, los ángulos correspondientes son A = A', B = B' y C = C'. Para denotar que dos triángulos ABC y DEF son semejantes se escribe ABC ~ DEF, donde el orden indica la correspondencia entre los ángulos: A, B y C se corresponden con D, E y F, respectivamente.

Una similitud tiene la propiedad (que la caracteriza) de multiplicar todas la longitudes por un mismo factor. Por lo tanto las razones longitud imagen / longitud origen son todas iguales, lo que da una segunda caracterización de los triángulos semejantes:

Dos triángulos son semejantes si las razones de los lados correspondientes son congruentes.

Ecuación

Se reúnen estas dos propiedades equivalentes en la siguiente ecuación:

(ABC \sim A'B'C') \Longleftrightarrow \begin{Bmatrix} \widehat{A}=\widehat{A}' \\ \widehat{B}=\widehat{B}' \\ \widehat{C}=\widehat{C}' \end{Bmatrix} \Longleftrightarrow \left ( \frac {\overline{A'B'}} {\overline{AB}} = \frac {\overline{A'C'}} {\overline{AC}} = \frac {\overline{B'C'}} {\overline{BC}} \right )

Corolarios

  • Todos los triángulos equiláteros son semejantes.
  • Si dos triángulos tienen dos ángulos iguales, los terceros también son iguales.

Una semejanza es la composición de una isometría (o sea, una rotación y una posible reflexión o simetría axial) con una homotecia. En la rotación se puede cambiar el tamaño y la orientación de una figura pero no se altera su forma. Por lo tanto, dos triángulos son semejantes si tienen similar forma. En el caso del triángulo, la forma sólo depende de sus ángulos (no así en el caso de un rectángulo, por ejemplo, donde uno de sus ángulos es recto pero cuya forma puede ser más o menos alargada, es decir que depende del cociente base / altura). Se puede simplificar así la definición: dos triángulos son semejantes si sus ángulos son iguales dos a dos. En la figura, los ángulos correspondientes son A = A', B = B' y C = C'. Para denotar que dos triángulos ABC y DEF son semejantes se escribe ABC ~ DEF, donde el orden indica la correspondencia entre los ángulos: A, B y C se corresponden con D, E y F, respectivamente. Una similitud tiene la propiedad (que la caracteriza) de multiplicar todas las longitudes por un mismo factor. Por lo tanto las razones longitud imagen / longitud origen son todas iguales, lo que da una segunda caracterización de los triángulos semejantes: Dos triángulos son semejantes si las razones de los lados correspondientes son congruentes Propiedad reflexiva, refleja o idéntica Todo triángulo es semejante a sí mismo. Propiedad idéntica o simétrica Si un triángulo es semejante a otro, aquel es semejante al primero. Propiedad transitiva Si un triángulo es semejante a otro, y éste a su vez es semejante a un tercero, el primero es semejante al tercero. Estas tres propiedades implican que la relación de semejanza entre dos triángulos es una relación de equivalencia.

Teorema fundamental de la semejanza de triángulos

Toda paralela a un lado de un triángulo que no pase por el vértice opuesto, determina con las rectas a las que pertenecen los otros dos lados, un triángulo semejante al dado.

H)

ABC; r || AC
r corta AB en L
r corta BC en M

T) (BLM \sim BAC)

D)

Triangulos semejantes 2.png

Casos

Podrán presentarse 3 casos:

I

r corta a los lados AB y BC por puntos interiores a ellos.

Haremos una primera consideración, referida a los ángulos, y la llamaremos (1):

 \wedge B = \wedge B por carácter reflejo
 \wedge BLM = \wedge A por ser correspondientes entre r || BC, secante AB
\wedge BML = \wedge C por ser correspondientes entre r || BC, secante AC

Por otra parte, en virtud del corolario del Teorema de Tales se tiene:

\frac{BL}{BA}=\frac{BM}{BC}\qquad \bigotimes

Si por M se traza una paralela al lado AB, esta interseca al lado AC en un punto N, y nuevamente por el corolario del Teorema de Tales tenemos:

\frac{BM}{BC}=\frac{AN}{AC}\qquad \bigoplus

Pero dado que AN = LM, por ser lados opuestos del paralelogramo ALMN, reemplazando en \bigoplus se obtiene:

\frac{BM}{BC}=\frac{LM}{AC}\qquad \bigodot
De \bigotimes y \bigodot se obtiene la consideración que llamaremos (2):
\frac{BL}{BA}=\frac{BM}{BC}=\frac{LM}{AC}

Luego de (1) y (2), resulta:

BLM \sim BAC por definición de semejanza.

II

r corta a las rectas de los lados AB y BC por puntos exteriores a ellos, sobre las semirrectas de origen B que los contienen.

Consideramos BLM como si fuera el triángulo dado, y BAC el triángulo nuevo, y por el caso I de la demostración, es:

(BAC \sim BLM) \Rightarrow (BLM \sim BAC) por carácter simétrico.

III

r corta a las rectas de los lados AB y BC en puntos que pertenecen a las semirrectas opuestas a las que sirven de sostén a dichos lados.

Sobre la semirrecta de origen B que contiene al punto A, se construye BN=BL y por el extremo N del segmento construido, una paralela a AC (s) que corta la recta de BC por O.

Quedan entonces BNO \sim BAC por el caso I, semejanza que llamaremos \otimes.

Teniendo en cuenta los triángulos BNO y BLM, se observa:

  • BN=BM por construcción
  • α=α' por ser opuestos por el vértice.
  • β=β' por ser alternos internos entre r || s, secante MN

Y siendo BNO=BLM es BNO ~ BLM \oplus por el primer corolario de la definición.

De \otimes y \oplus, y por carácter transitivo:

BAC ~ BLM \Rightarrow BLM ~ BAC

Geometrías no-euclídeas

La posibilidad de aumentar el tamaño de una figura sin modificar su forma es tan obvia y natural que durante milenios se pensó que era una consecuencia de los axiomas de la geometría, y se trató en vano de demostrarlo desde la Grecia antigua. Sin embargo, al estudiar otras geometrías, las no euclidianas, los matemáticos del siglo XIX, entre ellos Bernhard Riemann y Nikolái Lobachevski se dieron cuenta que esto sólo sucedía en los espacios euclídeos, es decir, sin curvatura.

Triángulos semejantes sobre variedad.png

Se puede definir una geometría sobre la esfera, por ejemplo: Los segmentos son los caminos más cortos que unen sus extremos y las rectas son las líneas geodésicas, a semejanza de los ecuadores de la esfera. El análogo de una homotecia se construye así: se escoge un punto O de la superficie como centro de la homotecia, y para definir la imagen de otro punto A se traza la geodésica que pasa por O y A (que es única si A no es el punto diametralmente opuesto a O), consideramos que O es el origen de esta línea y A el punto de abscisa 1. La imagen A' será el punto de abscisa k, donde k es la razón de la homotecia. En la figura se ha tomado k = 3 y se han construido las imágenes de B y C también.

Triángulos semejantes en la geometría de Riemann.

Se observa que la imagen del "triángulo" ABC es el "triángulo A'B'C', es decir que los catetos A'B', A'C' y B'C' son segmentos de líneas geodésicas, y que A'B'C' merece ser llamado triángulo semejante (por no decir homotético) al triángulo ABC.

Al aplicar la construcción precedente al pequeño triángulo ABC de la superfice de la esfera (pequeño en comparación con el diámetro), la suma de sus ángulos será ligéramente superior a π radianes (180º), pero el triángulo A'B'C' tendrá ángulos de mayor amplitud, siendo su suma mucho mayor que π radianes, como se ve en la figura. El aumento de tamaño implica aquí claramente un cambio de forma.

En conclusión, los triángulos semejantes permiten saber en que clase de espacio nos hallamos, uno euclidiano, o con curvatura positiva (como la esfera), o con curvatura negativa (espacio hiperbólico), y la doble caracterización de los triángulos similares (mismos ángulos y cocientes de los lados iguales) en la geometría usual no es ni anecdótico ni anodino.

Véase también

Obtenido de "Tri%C3%A1ngulos semejantes"

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Triángulos semejantes — Dos triángulos son semejantes si existe una semejanza (o similitud) que envía uno en el otro. Una semejanza es una composición de una isometría (o sea, una rotación seguida (quizás) de una reflexión o simetría axial) con una homotecia. Puede… …   Enciclopedia Universal

  • Congruencia de triángulos — Saltar a navegación, búsqueda La congruencia de triángulos estudia los casos en que dos o más triángulos presentan ángulos de igual medida o congruentes, así como lados de igual medida o congruentes. Condiciones de congruencia Para que se de la… …   Wikipedia Español

  • Semejanza (geometría) — Dos triángulos son semejantes si existe una relación de semejanza o similitud entre ambos. Contenido 1 Introducción 2 Ecuación 2.1 Corolarios …   Wikipedia Español

  • Triángulo — Para otros usos de este término, véase Triángulo (desambiguación). El triángulo es un polígono de tres lados. Un triángulo, en geometría, es un polígono determinado por tres rectas que se cortan dos a dos en tres puntos (que no se encuentran… …   Wikipedia Español

  • Teorema de Tales — Thales de Mileto. Existen dos teoremas en relación a la geometría clásica que reciben el nombre de Teorema de Thales, ambos atribuidos al matemático griego Tales de Mileto en el siglo VI a. C. Contenido 1 …   Wikipedia Español

  • Triángulo sagrado egipcio — o Triángulo egipcio,[1] es el nombre moderno dado a un triángulo rectángulo cuyo lados tienen las longitudes 3, 4 y 5, o sus medidas guardan estas proporciones. Es el triángulo rectángulo más fácil de construir y, posiblemente, se utilizó para… …   Wikipedia Español

  • Raíz cuadrada — Expresión matemática de raíz cuadrada de X . La …   Wikipedia Español

  • Congruencia (geometría) — Un ejemplo de movimiento o congruencia. Las dos figuras de la izquierda son congruentes, mientras que la tercera es semejante a ellas. La última no es ninguna de las dos cosas. Nótese que los movimientos cambian propiedades de las figuras como la …   Wikipedia Español

  • Teorema del coseno — El teorema del coseno es una generalización del teorema de Pitágoras en los triángulos no rectángulos que se utiliza, normalmente, en trigonometría. El teorema relaciona un lado de un triángulo con los otros dos y con el coseno del ángulo formado …   Wikipedia Español

  • Triangulación — La triangulación, en geometría, es el uso de la trigonometría de triángulos para determinar posiciones de puntos, medidas de distancias o áreas de figuras. En geodesia, se emplea para determinar los puntos singulares de un territorio, mediante el …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.