Resolución numérica de ecuaciones no lineales

En análisis numérico un algoritmo de búsqueda de raíces es un método numérico o algoritmo para encontrar las soluciones aproximadas de una ecuación dada por la expresión f(x) = 0 para una función matemática f dada. A la solución x de la ecuación se le llama raíz o cero de la función.

Igualmente, resolver la ecuación f(x) = g(x) es análogo a resolver la ecuación fg = 0, es decir, encontrar las raíces de la función f - g.

Este artículo trata sobre cómo encontrar raíces reales ó complejas, aproximadas por números de punto flotante.

Los métodos numéricos de resolución de ecuaciones no lineales suelen ser métodos iterativos que producen una sucesión de valores aproximados de la solución, que se espera, que converja a la raíz de la ecuación. Estos métodos van calculando las sucesivas aproximaciones en base a los anteriores, a partir de una o varias aproximaciones iniciales.

El comportamiento de los algoritmos de búsqueda de raíces se estudia en análisis numérico. Funcionan mejor cuando se toman en cuenta las características de la función. Para saber que método debemos aplicar, hay que tener en cuenta la capacidad de separar raíces cercanas, confiabilidad en el alcance de soluciones evitando errores numéricos graves y orden de convergencia.

Contenido

Algoritmos generales para ecuaciones de una variable

Los siguientes métodos son para calcular las raíces reales de una ecuación dada por f(x) = 0 donde se exige al menos que la función f sea una función continua para garantizar la existencia de solución. La mayoría de métodos se obtienen de interpolar la función, generalmente mediante un polinomio de primer grado (interpolación lineal) y después aproximar la solución mediante alguna de las raíces del polinomio.

El algoritmo más simple de búsqueda de raíces es el método de bisección. Requiere un intervalo inicial que contenga alguna raíz de la ecuación (de forma que la función tome en los extremos del mismo valores de distinto signo; véase el teorema de Bolzano). Dicho intervalo inicial se va dividiendo sucesivamente por la mitad (se bisecta) tomándose el intervalo que contiene a la raíz. A pesar de ser un método que siempre converge a una solución, converge muy lentamente.

El método de Newton asume que la función f sea continuamente derivable y que se conoce la derivada de la función. Este método puede no converger si se comienza con un valor muy alejado de la raíz. Sin embargo, si converge, lo hace mucho más rápido que el método de bisección (usualmente, de manera cuadrática), por eso el número de dígitos correctos se duplica en cada iteración. El método de Newton también es útil porque se generaliza para problemas de dimensiones más altas.

Reemplazando la derivada del método de Newton por un cociente incremental, obtenemos el método de la secante. Este método no requiere el cálculo (ni la existencia) de la derivada, pero el precio que se debe pagar es un orden de convergencia más bajo (aproximadamente 1.6).

El método de la regla falsa (o regula falsi) es un método que combina lo mejor del método de bisección y del método de la secante. El método corta el intervalo en dos partes como en el método de bisección, pero a diferencia de éste, lo corta por el valor obtenido aplicando el método de la secante a los extremos del intervalo, no siendo generalmente las partes iguales. El método converge siempre a una raíz de la ecuación, generalmente de forma más rápida que el método de bisección pero más lenta que el método de la secante.

Finalmente, hay una familia de métodos conocidos como métodos de punto fijo. Estos métodos se basan en obtener a partir de la ecuación f(x) = 0 una ecuación equivalente de la forma g(x) = x cuya solución se convierta en un punto fijo de g e iterando a partir de un valor inicial hasta que se alcance.


Véase también

Referencias

Enlaces externos


Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Sistema de ecuaciones — En las matemáticas, un sistema de ecuaciones es un conjunto de dos o más ecuaciones con varias incógnitas que conforman un problema matemático consistente en encontrar las incógnitas que satisfacen dichas ecuaciones. En un sistema de ecuaciones… …   Wikipedia Español

  • Análisis numérico — El análisis numérico o cálculo numérico es la rama de las matemáticas que se encarga de diseñar algoritmos para, a través de números y reglas matemáticas simples, simular procesos matemáticos más complejos aplicados a procesos del mundo real. El… …   Wikipedia Español

  • General Problem Solver — El General Problem Solver (GPS), en español Solucionador General de Problemas, es un programa de ordenador creado en 1957 por Herbert Simon, J.C. Shaw, y Allen Newell con el objetivo de construir una máquina capaz de resolver problemas de… …   Wikipedia Español

  • Método de la regla falsa — En cálculo numérico, el método de regula falsi (regla falsa) o falsa posición es un método iterativo de resolución numérica de ecuaciones no lineales. El método combina el método de bisección y el método de la secante. Contenido 1 El método 2… …   Wikipedia Español

  • Método de los elementos finitos — Solución de MEF en 2D para una configuración de un magnetostato, (las líneas muestran la dirección de la densidad de flujo calculada, y el color, su magnitud) …   Wikipedia Español

  • Ecuación diferencial ordinaria — Saltar a navegación, búsqueda En matemáticas, una ecuación diferencial ordinaria (comúnmente abreviada EDO ) es una relación que contiene funciones de una sola variable independiente, y una o más de sus derivadas con respecto a esa variable. Las… …   Wikipedia Español

  • Historia de la matemática — Página del Compendio de cálculo por el método de completado y balanceado de Muhammad ibn Mūsā al Khwārizmī (820 d.C.) La historia de las matemáticas es el área de estudio que abarca las investigaciones sobre los orígenes de los descubrimi …   Wikipedia Español

  • Método del gradiente biconjugado estabilizado — En álgebra lineal numérica, el método del gradiente biconjugado estabilizado, generalmente abreviado como BiCGSTAB (del inglés «biconjugate gradient stabilized method»), es un método iterativo propuesto por H. A. van der Vorst para la resolución… …   Wikipedia Español

  • Electricidad — Este artículo o sección puede ser demasiado extenso(a). Algunos navegadores pueden tener dificultades al mostrar este artículo. Por favor, considera separar cada sección por artículos independientes, y luego resumir las secciones presentes en… …   Wikipedia Español

  • Modelo numérico de predicción meteorológica — Ejemplo de una predicción de la altura geopotencial de 500 mbar utilizando un modelo numérico de predicción del tiempo. La predicción meteorológica numérica hace referencia a los sistemas que usan datos meteorológicos actuales para alimentar… …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.