Teorema de Desargues

Teorema de desargues.svg

En geometría proyectiva, el teorema de Desargues, llamado así en honor a Gérard Desargues expone:

En el plano proyectivo, dos triángulos son perspectivos desde un punto si y sólo si son perspectivos desde una recta.

Considere los triángulos ABC y DEF. El que los triángulos sean perspectivos desde un punto significa que las rectas AD, BE y CF concurren en un mismo punto O. De modo parecido, el que los triángulos sean perspectivos desde una recta significa que los pares de lados (AB, DE), (BC, EF) y (AC, DF) se cortan respectivamente sobre una misma recta r.

Al punto O se le llama centro de perspectiva y a la recta r, eje de perspectiva.

Demostración del teorema

Desteodem.svg

Para demostrar este teorema, considere los planos p y q secantes en la recta r. Sea AB un segmento sobre el plano q y M la intersección de la recta AB con la recta r. Sean S y T dos puntos exteriores a dichos planos. Sean C y D las proyecciones sobre el plano p de los puntos A y B desde el punto S y E y F las proyecciones del mismo segmento AB desde el punto T sobre el plano p.

El plano determinado por los puntos SAB corta al plano p sobre la recta CD. El punto M se encuentra sobre el dicho plano, por estar sobre la recta AB y por esta razón M se halla sobre la recta CD. Usando los mismos argumentos, pero considerando ahora el plano TAB, se demuestra que el punto M es común a las rectas AB y EF. Así, las rectas CD y EF se cortan en el mismo punto M sobre la recta r.

Sea O la intersección de la recta ST sobre el plano p. El plano STA corta al plano p sobre la recta CE que contiene al punto O. De manera similar, el plano STB corta al plano p en la recta DF que también contiene al punto O. Por tanto, las rectas CE y DF se cortan en dicho punto.

De modo que los pares de puntos C, E y D, F son proyectivos desde el punto O. Las rectas CD y EF son proyectivas desde la recta r.

El recíproco también es cierto: Si las rectas CD y EF en un mismo plano p, son proyectivas desde una recta r y los puntos correspondientes C, E y D, F son proyectivos desde un punto O en dicho plano, entonces existe un plano q, secante al plano p en r, una recta AB sobre dicho plano y un par de puntos exteriores a ambos planos desde los cuales la recta AB se poryecta sobre CD y EF, el punto A sobre C y E y el punto B sobre D y F.

En el teorema de Desargues, podemos considerar los triángulos como las proyecctiones de un único triángulo sobre algún plano q desde dos puntos distintos S y T. La recta r y el punto O son respectivamente, la intersección del plano q con aquél donde los dos triángulos son perspectivos, y la intersección de la recta ST con aquél plano. Los vértices correspondientes en ambos triángulos serán proyectivos desde el punto O y los lados correspondientes de ambos triángulos serán proyectivos desde la recta r. Esto demuestra el teorema

Referencias

  • Luigi Cremona, Elements of Projective Geometry third edition, Dover 2005 ISBN 0-486-44266-7

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Gérard Desargues — Gérard Desargues. Gérard Desargues (21 de febrero de 1591 Octubre de 1661) fue un matemático e ingeniero Francés, considerado por algunos como padre fundador de la Geometría proyectiva. Su nombre es empleado hoy en día como un epónimo del Teorema …   Wikipedia Español

  • Plano proyectivo — Saltar a navegación, búsqueda El plano de Fano es un ejemplo de Plano proyectivo El plano proyectivo es el conjunto estudiado por la Geometría proyectiva. Surge en Geometría analítica al añadir a un plano un punto por cada familia de rectas… …   Wikipedia Español

  • Geometría proyectiva — Saltar a navegación, búsqueda Se llama geometría proyectiva a una estructura matemática que estudia las incidencias de puntos y rectas sin tener en cuenta la medida. A menudo se usa esta palabra también para hablar de la teoría de la proyección… …   Wikipedia Español

  • Geometría proyectiva (Matemáticas) — Este artículo o sección necesita referencias que aparezcan en una publicación acreditada, como revistas especializadas, monografías, prensa diaria o páginas de Internet fidedignas. Puedes añadirlas así o avisar …   Wikipedia Español

  • Geometría afín — En la matemática, la geometría afín es el estudio de las propiedades geométricas que permancen inmutables bajo transformaciones afines, i.e. transformaciones lineales no singulares y traslaciones. El nombre de geometría afín así como el de… …   Wikipedia Español

  • Historia de la geometría — La geometría es una de las más antiguas ciencias. Inicialmente, constituía un cuerpo de conocimientos prácticos en relación con las longitudes, áreas y volúmenes. En el Antiguo Egipto estaba muy desarrollada, según los textos de Heródoto,… …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.