Boro

ÔĽŅ
Boro

Boro

Boro
Berilio ‚Üź Boro ‚Üí Carbono
-
  Rhombohedral.svg
 
5
B
 
               
               
                                   
                                   
                                                               
                                                        Al
Tabla completa ‚ÄĘ Tabla extendida
Información general
Nombre, s√≠mbolo, n√ļmero Boro, B, 5
Serie química Metaloides
Grupo, período, bloque 13, 2, p
Densidad 2460 kg/m3
Apariencia Negro
B,5.jpg
N¬į CAS {{{CAS}}}
N¬į EINECS {{{EINECS}}}
Propiedades atómicas
Densidad 10,811(7) u
Radio medio 85 pm
Radio atómico (calc) 87 pm (Radio de Bohr)
Radio covalente 82 pm
Radio de van der Waals {{{radio_van_der_waals}}} pm
Configuración electrónica [He]2s22p1
Electrones por nivel de energía 2, 3 (Imagen)
Estado(s) de oxidación 3 (levemente ácido)
√ďxido
Estructura cristalina romboédrica
Propiedades físicas
Estado ordinario Sólido (no magnético)
Punto de fusi√≥n 2349 K
Punto de ebullici√≥n 4200 K
Punto de inflamabilidad {{{P_inflamabilidad}}} K
Entalpía de vaporización 489,7 kJ/mol
Entalpía de fusión 50,2 kJ/mol
Presión de vapor 0,348
Temperatura cr√≠tica  K
Presi√≥n cr√≠tica  Pa
Volumen molar m3/mol
Velocidad del sonido 16200 m/s a 20 ¬įC
Varios
Electronegatividad (Pauling) 2,04
Calor específico 1026 J/(kg·K)
Conductividad eléctrica 1,0 × 10-4 m-1 S/m
Conductividad térmica 27,4 W/(m·K)
1.ª Energía de ionización 800,6 kJ/mol
2.ª Energía de ionización 2427,1 kJ/mol
3.ª Energía de ionización 3659,7 kJ/mol
4.ª Energía de ionización 25025,8 kJ/mol
5.ª Energía de ionización 32826,7 kJ/mol
6.ª Energía de ionización {{{E_ionización6}}} kJ/mol
7.ª Energía de ionización {{{E_ionización7}}} kJ/mol
8.ª Energía de ionización {{{E_ionización8}}} kJ/mol
9.ª Energía de ionización {{{E_ionización9}}} kJ/mol
10.ª Energía de ionización {{{E_ionización10}}} kJ/mol
Isótopos mas estables
iso AN Periodo MD Ed PD
MeV
10B 19,9% estable con 5 neutrones
11B 80,1% estable con 6 neutrones
Nota: unidades seg√ļn el SI y en CNPT, salvo indicaci√≥n contraria.

El boro es un elemento qu√≠mico de la tabla peri√≥dica que tiene el s√≠mbolo B y n√ļmero at√≥mico 5. Es un elemento metaloide, semiconductor, trivalente que existe abundantemente en el mineral b√≥rax. Hay dos al√≥tropos del boro; el boro amorfo es un polvo marr√≥n, pero el boro met√°lico es negro. La forma met√°lica es dura (9,3 en la escala de Mohs) y es un mal conductor a temperatura ambiente. No se ha encontrado libre en la naturaleza.

Contenido

Características principales

El boro es un elemento con vacantes electrónicas en el orbital; por ello presenta una acusada apetencia de electrones, de modo que sus compuestos se comportan a menudo como ácidos de Lewis, reaccionando con rapidez con sustancias ricas en electrones.

Entre las caracter√≠sticas √≥pticas de este elemento, se incluye la transmisi√≥n de radiaci√≥n infrarroja. A temperatura ambiente, su conductividad el√©ctrica es peque√Īa, pero es buen conductor de la electricidad a alta temperatura.

Este metaloide tiene la más alta resistencia a la tracción entre los elementos químicos conocidos; el material fundido con arco tiene una resistencia mecánica entre 1.600 y 2.400 MPa.

El nitruro de boro, un aislante eléctrico que conduce el calor tan bien como los metales, se emplea en la obtención de materiales tan duros como el diamante. El boro tiene además cualidades lubricantes similares al grafito y comparte con el carbono la capacidad de formar redes moleculares mediante enlaces covalentes estables.

Aplicaciones

El compuesto de boro de mayor importancia económica es el bórax que se emplea en grandes cantidades en la fabricación de fibra de vidrio aislante y perborato de sodio. Otros usos incluyen:

  • Las fibras de boro usadas en aplicaciones mec√°nicas especiales, en el √°mbito aeroespacial, alcanzan resistencias mec√°nicas de hasta 3600 MPa.
  • El boro amorfo se usa en fuegos artificiales por su color verde.
  • El √°cido b√≥rico se emplea en productos textiles.
  • El boro es usado como semiconductor
  • Los compuestos de boro tienen muchas aplicaciones en la s√≠ntesis org√°nica y en la fabricaci√≥n de cristales de borosilicato.
  • Algunos compuestos se emplean como conservantes de la madera, siendo de gran inter√©s su uso por su baja toxicidad.
  • El B-10 se usa en el control de los reactores nucleares, como escudo frente a las radiaciones y en la detecci√≥n de neutrones.
  • Los hidruros de boro se oxidan con facilidad liberando gran cantidad de energ√≠a por lo que se ha estudiado su uso como combustible

Formación

Atendiendo a la teor√≠a del Big Bang, en el origen el Universo encontramos como elementos H (hidr√≥geno), He (helio) y Li-7 (litio-7), pero el B, el quinto elemento de la tabla peri√≥dica no tiene presencia apreciable. Por lo tanto en la condensaci√≥n de las primeras nebulosas, se forman estrellas fundamentalmente de H con una porci√≥n de He (helio) y Li-7 (litio-7), en las que se dan los distintos procesos de formaci√≥n de elementos (Cadena prot√≥n-prot√≥n, proceso triple a y ciclo CNO). Pero en ninguna de ellas se forma boro como producto, ya que a tales temperaturas (del orden de 107-108k) reacciona a un ritmo mayor del que se forma. Tampoco se forma boro durante el proceso de captura de neutrones, que da como resultado √°tomos de gran masa at√≥mica. El B se forma en un proceso denominado astillamiento (spallation), que consiste en la rotura de n√ļcleos m√°s pesados que el boro a causa del bombardeo de rayos c√≥smicos. Al ser tan poco frecuente este proceso, la abundancia c√≥smica del boro es muy peque√Īa.

Historia

Los compuestos de boro (del √°rabe buraq y √©ste del persa burah) se conocen desde hace miles de a√Īos. En el antiguo Egipto la momificaci√≥n depend√≠a del natr√≥n, un mineral que conten√≠a boratos y otras sales comunes. En China se usaban ya cristales de b√≥rax hacia el 300 a. C., y en la antigua Roma compuestos de boro en la fabricaci√≥n de cristal. A partir del siglo VIII los boratos fueron usados en procesos de refiner√≠a de oro y plata.

En 1808 Humphry Davy, Gay-Lussac y L. J. Thenard obtuvieron boro con una pureza del 50% aproximadamente, aunque ninguno de ellos reconoció la sustancia como un nuevo elemento, cosa que haría Jöns Jacob Berzelius en 1824. El boro puro fue producido por primera vez por el químico estadounidense W. Weintraub en 1909.

Obtención

El boro en su forma circular no se encuentra en la naturaleza. La mayor fuente de boro son los boratos de depósitos evaporíticos, como el bórax y, con menos importancia, la colemanita. El boro también precipita como ácido ortobórico H3BO3 alrededor de algunas fuentes y humos volcánicos, dando sasolitas. También se forman menas de boro naturales en el proceso de solidificación de magmas silicatados; estos depósitos son las pegmatitas.

Los yacimientos más importantes de estas menas son los siguientes: yacimientos del bórax se encuentran en California (EE. UU.), Tincalayu (Argentina) y Kirka (Turquía). De colemanita en Turquía y en el Valle de la Muerte (EE. UU.). Sasolitas en lugares geológicamente activos de la región de Lardarello (Italia). Se expende en el comercio como Na2B4O7·10 H2O o pentahidratado, se le conoce como Bórax.

El boro puro es difícil de preparar; los primeros métodos usados requerían la reducción del óxido con metales como el magnesio o aluminio, pero el producto resultante casi siempre se contaminaba. Puede obtenerse por reducción de halogenuros de boro volátiles con hidrógeno a alta temperatura.

Formas alotrópicas

El boro presenta multitud de formas alotr√≥picas que tienen como elemento estructural com√ļn un icosaedro regular. La ordenaci√≥n de los icosaedros puede ser de dos formas distintas:

  • Uni√≥n de dos icosaedros por dos v√©rtices, mediante enlaces covalentes normales B - B (figura 1).
  • Uni√≥n de tres icosaedros por tres v√©rtices, mediante un enlace de tres centros con dos electrones (figura 2).

Dentro de estas posibles uniones, en el boro cristalino los icosaedros pueden asociarse de varias maneras para originar los alótropos correspondientes:

  • Boro tetragonal (T - 50): formado por 50 √°tomos de boro por celdilla unidad, que son cuatro unidades icosa√©dricas unidas entre s√≠ por algunos enlaces B - B y de dos boros elementales que act√ļan como uni√≥n tetra√©drica entre icosaedros. Posee una densidad de 2,31 g/cm3.
  • Boro rombo√©drico alfa (R - 12): est√° formado por l√°minas de icosaedros unidas paralelamente. Las uniones intralaminares se efect√ļan por medio de enlaces de tres centros, mientras que las uniones interlaminares se producen mediante enlaces de dos centros. La densidad de este tipo de boro es de 2,46 g/cm3, y presenta un color rojo claro.
  • Boro rombo√©drico beta (R - 105): formado por doce icosaedros B12 ordenados en forma icosa√©drica en torno a una unidad central de B12, es decir, B12(B12)12. Presenta una densidad de 2,35 g/cm3.

Abundancia en el universo

La abundancia del boro en el universo ha sido estimada en 0,001 ppm, abundancia muy peque√Īa que junto con las abundancias del litio, el molibdeno y el berilio forma el cuarteto de elementos "ligeros" m√°s escasos en el universo, el resto de elementos de los cuatro primeros periodos ‚ÄĒhasta y exceptuando el ars√©nico‚ÄĒ son cuando menos diez veces m√°s abundantes que el boro (exceptuando el escandio y el galio, que son aproximadamente cinco veces m√°s abundantes que el boro).

Distribución del boro en el Sistema Solar

El boro posee un elevado punto de fusi√≥n (2348 K), por lo tanto es un elemento refractario que condensa y se acreciona en las primeras fases de la condensaci√≥n de una nebulosa. Este hecho lo sit√ļa en el Sistema Solar Interno, ya que durante la fase del Sol conocida como T-Tauri (fase inicial de la vida de una estrella, durante la cual emite viento solar con una gran intensidad) el viento solar produce un efecto de arrastre sobre las masas de part√≠culas que orbitan alrededor, arrastrando las menos densas hacia el exterior (elementos vol√°tiles) y permaneciendo las m√°s densas (elementos refractarios). Es decir que encontraremos boro en los planetas rocosos que forman el Sistema Solar Interno, pero la abundancia descender√° mucho en los planetas gaseosos del Sistema Solar Externo.

Distribución del boro en los meteoritos

Los meteoritos (condritas y acondritas) muestran concentraciones de boro alrededor de 0,4 y 1,4 ppm respectivamente. Estas concentraciones son substancialmente mayores que las del universo, ya que otros elementos más volátiles que el boro se encuentran dispersos por el espacio en fase gaseosa (elementos atmófilos cómo el hidrógeno y el helio, que no se encuentran en forma de sólidos ni condensan), o formando "nubes" de gas alrededor de sólidos a causa de un campo gravitatorio, o en forma de fluido atmosférico. La abundancia de estos elementos en fase gaseosa representa una buena parte de la abundancia de materia en el universo, y si consideramos que los meteoritos (ya sean condritas o acondritas), al ser sólidos, no disponen de estos elementos, o no disponen de ellos en abundancia, entonces la abundancia de los otros elementos se verá aumentada. La diferencia entre las abundancias de condritas y acondritas se entiende en el hecho de que el boro es un elemento exclusivamente litófilo, es decir que tiene preferencia a incorporarse a las fases líquidas silicatadas. Las condritas son rocas o muestras de roca extraterrestre que no ha pasado por un proceso de diferenciación, es decir que no ha llegado a fundirse ni a separarse en silicatos, metales y sulfuros. Las acondritas en cambio son muestras de roca silicatada, procedentes de masas diferenciadas, por ello su abundancia de boro es mayor que en las condritas.

El boro en la corteza terrestre

La concentraci√≥n estimada del boro en la corteza terrestre es de 10 ppm, y su masa de 2,4 √ó 1017 kg. Actualmente se sabe que el boro es mucho m√°s abundante en rocas sedimentarias (300 ppm) que en rocas √≠gneas (3ppm), esta diferencia es consecuencia de tres caracter√≠sticas: el boro es sublimable, la no preferencia del boro por las fases fundidas (elemento incompatible), su alta movilidad en la fase acuosa y su fuerte afinidad por minerales arcillosos (elemento lit√≥filo).

El boro llega a la corteza terrestre a trav√©s de diferentes v√≠as, y √©stas son la precipitaci√≥n atmosf√©rica, que contiene peque√Īas cantidades de boro en disoluci√≥n; y el vulcanismo y la actividad geol√≥gica an√°loga, que liberan roca fundida con concentraciones variables de boro. Tambi√©n hay flujos del oc√©ano a la corteza oce√°nica en forma de sedimentaci√≥n y diag√©nesis. Las v√≠as de salida del boro curtical son la erosi√≥n y los procesos de subducci√≥n de placas.

El boro tiende a concentrarse en las fases residuales de la parte fundida, los elementos que componen la masa de magma solidifican en funci√≥n de su punto de fusi√≥n y de su compatibilidad con la fase s√≥lida, de esta forma, en los sucesivos estadios de la solidificaci√≥n, la concentraci√≥n de los elementos incompatibles (entre ellos el boro) va aumentando en el magma, hasta que finalmente tenemos un l√≠quido formado por elementos incompatibles que acaban solidific√°ndose. Estos dep√≥sitos de elementos incompatibles son los que conocemos por el nombre de pegmatitas. Obedeciendo a este hecho las concentraciones del boro son relativamente bajas en basaltos (6-0,1 ppm) y m√°s altas en rocas m√°s cristalizadas como el granito (85 ppm) aunque tambi√©n se encuentran altas concentraciones de boro en granitos derivados de rocas sedimentarias ricas en boro. Las pegmatitas pueden contener concentraciones de boro de 1360 ppm.

Durante el deterioro de rocas submarinas, las rocas ígneas se degradan y forman minerales arcillosos que adsorben boro del agua marina, de esta forma se enriquece en boro la masa de roca.

Los basaltos de las islas magm√°ticas tienden a estar enriquecidos en boro; este enriquecimiento se atribuye a la deshidrataci√≥n de los bloques rocosos subducidos, ricos en boro adsorbido por minerales arcillosos. Las fracciones ricas en boro toman parte en el proceso de fusi√≥n y las rocas volc√°nicas resultantes (andesitas y dioritas) est√°n consecuentemente enriquecidas en boro. Minerales arcillosos (tales como ilitas, esmectitas y montmorillonitas) incorporan boro del agua tanto por adsorci√≥n como en forma de elemento de sustituci√≥n en la estructura. Las rocas sedimentarias de los oc√©anos tienden a contener m√°s boro que las rocas sedimentarias fluviales ya que el agua marina contiene mayor concentraci√≥n de boro que las aguas continentales. El boro es adsorbido s√≥lo a temperaturas inferiores a 40 ¬įC, a m√°s altas temperaturas (>150 ¬įC) puede ser liberado del mineral, por ello, durante el metamorfismo de rocas sedimentarias mucho del boro adsorbido es liberado en el agua, y si se incrementa a√ļn m√°s el metamorfismo el boro como elemento sustituyente es tambi√©n liberado, por lo tanto los sedimentos metamorfizados tienden a contener concentraciones de boro ampliamente menores que las equivalentes rocas sedimentarias sin metamorfizar.

Los minerales principales en lo que encontramos boro son en su mayor√≠a rocas evapor√≠ticas, como el b√≥rax, altamente soluble en agua; la colemanita; la kernita (una forma parcialmente deshidratada del b√≥rax) y la ulexita. Tambi√©n existen importantes minerales del boro en forma de yacimientos de rocas √≠gneas, la datolita, el chorlo y la elbanita, estos minerales se clasifican en el grupo de los boratos (sales inorg√°nicas compuestas por boro y otros iones), exceptuando los dos √ļltimos minerales mencionados, los cuales pertenecen al grupo de las turmalinas, que aparecen especialmente en filones del tipo pegmat√≠tico.

El boro en la hidrosfera

El boro se encuentra en el agua marina en concentraciones estimadas en 4,6 ppm y en una masa de 5,4 √ó 1015 kg. Se encuentra como componente de dos mol√©culas hidratadas; el B(OH)3 trigonal y el B(OH)4- tetra√©drico. La proporci√≥n de las dos formas depende del pH del agua de mar y el equilibrio entre las concentraciones de las dos formas se encuentra en pH de 8,7-8,8, en medios m√°s b√°sicos predomina la forma tetra√©drica y en medios m√°s √°cidos la trigonal. Debido al gran tiempo de residencia del boro en el agua de mar (25 millones de a√Īos), las concentraciones de B(OH)3 y B(OH)4- no var√≠an significativamente en los distintos oc√©anos. El boro llega a la hidrosfera desde los continentes mediante el ciclo del agua y por procesos de erosi√≥n de rocas, y desde la corteza oce√°nica por circulaci√≥n hidrotermal, adem√°s tambi√©n procede de la precipitaci√≥n atmosf√©rica.

El boro en la atmósfera

La atm√≥sfera contiene unos 2,7 √ó 108 kg de boro. √Čste se encuentra en la troposfera en estado gaseoso en un 97%, el 3% restante se encuentra en estado s√≥lido en forma de part√≠culas. Los tiempos de residencia que se consideran para el boro troposf√©rico en su forma gaseosa son de 19 a 36 d√≠as, para el boro particulado son de 2 a 6 d√≠as. Debido a estos tiempos de residencia tan bajos las concentraciones de boro son variables en distintos puntos de la atm√≥sfera. El boro llega a la atm√≥sfera a trav√©s de la evaporaci√≥n del agua marina, entonces puede volver a los oc√©anos o a los continentes por precipitaci√≥n.

El boro en las plantas

Para las plantas el boro es un nutriente esencial. Parece tener un papel fundamental en el mantenimiento de la estructura de la pared celular (mediante formación de grupos cis-diol) y de las membranas. Es un elemento poco móvil en el floema, por ello los síntomas de deficiencia suelen aparecer en las hojas jóvenes y los de toxicidad en las hojas maduras. Un exceso de boro es perjudicial para algunas plantas poco tolerantes al boro, pudiendo actuar en sus nervaduras debilitandolas

Isótopos

En la naturaleza se encuentran dos isótopos de boro, 11B (80,1%) y 10B (19,9%).

Precauciones

Ni el boro ni los boratos son tóxicos; sin embargo algunos de los más exóticos compuestos de boro e hidrógenos son tóxicos y han de manipularse con cuidado.

Véase también

Enlaces externos

Obtenido de "Boro"

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Boro ‚ÄĒ has several meanings: *Boro, New South Wales, a locality in Australia *Boro (Formula One) was a Dutch Formula One constructor. *Boro, Togo is a village is the Kara region of Togo *Boro is a local nickname for English towns which end with the… ‚Ķ   Wikipedia

  • Boro ‚ÄĒ bezeichnet eine Sprache in √Ąthiopien, siehe Boro (Sprache) einen Fluss im S√ľdosten Osttimors, siehe Irebere ein Volkes in Nordostindien und dessen Sprache, siehe Bodo (Volk) und Bodo (Sprache) ein britisches Formel 1 Auto von 1975, siehe Boro… ‚Ķ   Deutsch Wikipedia

  • boro ‚ÄĒ (B) Elemento no met√°lico, similar al aluminio. Su n√ļmero at√≥mico es 5; su peso at√≥mico es 10,8. El boro elemental aparece en forma de cristales oscuros y como una masa amorfa amarillo verdosa. Ciertas concentraciones de este elemento son t√≥xicas… ‚Ķ   Diccionario m√©dico

  • Bor√∂ ‚ÄĒ (Bord√∂), eine der kleinern F√§r√∂erinseln, zwischen den Inseln Oster√∂ und Svin√∂ gelegen, 94 qkm gro√ü mit 530 Einw. und dem Hafenort Klaksvig an der Nordwestk√ľste ‚Ķ   Meyers Gro√ües Konversations-Lexikon

  • boro ‚ÄĒ |√≥| s. m. [Qu√≠mica] Elemento qu√≠mico metaloide (s√≠mbolo B), de n√ļmero at√īmico 5, de massa at√īmica 10,81, de densidade 2,4, s√≥lido, duro e anegrado, que se aparenta com o carbono ou com o sil√≠cio, mas trivalente ‚Ķ   Dicion√°rio da L√≠ngua Portuguesa

  • bor√≥ ‚ÄĒ s. m. 1.¬† [Brasil] Ficha. 2.¬†Moeda division√°ria emitida por particulares. 3.¬†Contrabando. 4.¬†Furto disfar√ßado ‚Ķ   Dicion√°rio da L√≠ngua Portuguesa

  • boro ‚ÄĒ sustantivo masculino 1. (no contable) Bo. Elemento qu√≠mico metaloide de color oscuro que s√≥lo aparece combinado en el b√≥rax o el √°cido b√≥rico ‚Ķ   Diccionario Salamanca de la Lengua Espa√Īola

  • boro ‚ÄĒ (De b√≥rax). m. Elemento qu√≠mico de n√ļm. at√≥m. 5. Semimetal escaso en la corteza terrestre, aunque muy extendido, se encuentra como polvo amorfo o cristalizado en formas que recuerdan al diamante, en el √°cido b√≥rico y en el b√≥rax. Se usa en la… ‚Ķ   Diccionario de la lengua espa√Īola

  • boro- ‚ÄĒ or bor [b√īr‚Ä≤Ňć, b√īr‚Ä≤…ô] combining form boron ‚Ķ   English World dictionary

  • Boro ‚ÄĒ Pour les articles homonymes, voir Boro (homonyme). Logo de l √©curie Boro Boro √©tait une √©curie de Formule 1 fond√©e en 1976 par les fr√®res Bob et Rody Hoogenboom et sponsoris√©e par la soci√©t√© hollandaise HB Bewaking (HB Securitee). Boro a… ‚Ķ   Wikip√©dia en Fran√ßais


Compartir el artículo y extractos

Link directo
… Do a right-click on the link above
and select ‚ÄúCopy Link‚ÄĚ

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.