Gas


Gas
Para otros usos de este término, véase Gas (desambiguación).

Se denomina gas al estado de agregación de la materia en el que las sustancias no tienen forma ni volumen propio, adoptando el de los recipientes que las contienen. Las moléculas que constituyen un gas casi no son atraídas unas por otras, por lo que se mueven en el vacío a gran velocidad y muy separadas unas de otras, explicando así las propiedades:

  • Las moléculas de un gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos. Las fuerzas gravitatorias y de atracción entre las moléculas son despreciables, en comparación con la velocidad a que se mueven las moléculas.
  • Los gases ocupan completamente el volumen del recipiente que los contiene.
  • Los gases no tienen forma definida, adoptando la de los recipientes que las contiene.
  • Pueden comprimirse fácilmente, debido a que existen enormes espacios vacíos entre unas moléculas y otras.

Existen diversas leyes que relacionan la presión, el volumen y la temperatura de un gas.


Contenido

Ley de Boyle-Mariotte

Artículo principal: Ley de Boyle-Mariotte

Para una cierta cantidad de gas a temperatura constante, su presión es inversamente proporcional al volumen que ocupa.

Matemáticamente sería:

P_1V_1=P_2V_2\,

Ley de Charles

Artículo principal: Ley de Charles

A una presión dada, el volumen ocupado por una cierta cantidad de un gas es directamente proporcional a su temperatura.

Matemáticamente la expresión sería:

\frac{V_1}{T_1}=\frac{V_2}{T_2}   o   \frac{V_1}{V_2}=\frac{T_1}{T_2}.

Ley de Gay-Lussac

Artículo principal: Ley de Gay-Lussac

La presión de una cierta cantidad de gas, que se mantiene a volumen constante, es directamente proporcional a la temperatura:

\frac{P_1}{T_1}=\frac{P_2}{T_2}

Es por esto que para poder envasar gas, como gas licuado, primero se ha de enfriarse el volumen de gas deseado, hasta una temperatura característica de cada gas, a fin de poder someterlo a la presión requerida para licuarlo sin que se sobrecaliente, y, eventualmente, explote.

Ley de los gases ideales

Artículo principal: Ley de los gases ideales

Las tres leyes mencionadas pueden combinarse matemáticamente en la llamada ley general de los gases. Su expresión matemática es:

 P \cdot V = n \cdot R \cdot T

siendo P la presión, V el volumen, n el número de moles, R la constante universal de los gases ideales y T la temperatura en Kelvin.

El valor de R depende de las unidades que se estén utilizando:

  • R = 0,082 atm·l·K−1·mol−1 si se trabaja con atmósferas y litros
  • R = 8,31451 J·K−1·mol−1 si se trabaja en Sistema Internacional de Unidades
  • R = 1,987 cal·K−1·mol−1
  • R = 8,31451 10−10 erg ·K−1·mol−1
  • R = 8,317x10−3 (m3)(Kpa)/(mol)(K) si se trabaja con metros cúbicos y kilo pascales

De esta ley se deduce que un mol de gas ideal ocupa siempre un volumen igual a 22,4 litros a 0 °C y 1 atmósfera. Véase también Volumen molar. También se le llama la ecuación de estado de los gases, ya que sólo depende del estado actual en que se encuentre el gas.

Gases reales

Si se quiere afinar más o si se quiere medir el comportamiento de algún gas que escapa al comportamiento ideal, habrá que recurrir a las ecuaciones de los gases reales, que son variadas y más complicadas cuanto más precisas.

Los gases reales no se expanden infinitamente, sino que llegaría un momento en el que no ocuparían más volumen. Esto se debe a que entre sus partículas, ya sean átomos como en los gases nobles o moléculas como en el (O2) y la mayoría de los gases, se establecen unas fuerzas bastante pequeñas, debido a los cambios aleatorios de sus cargas electrostáticas, a las que se llama fuerzas de Van der Waals.

El comportamiento de un gas suele concordar más con el comportamiento ideal cuanto más sencilla sea su fórmula química y cuanto menor sea su reactividad ( tendencia a formar enlaces). Así, por ejemplo, los gases nobles al ser moléculas monoatómicas y tener muy baja reactividad, sobre todo el helio, tendrán un comportamiento bastante cercano al ideal. Les seguirán los gases diatómicos, en particular el más liviano hidrógeno. Menos ideales serán los triatómicos, como el dióxido de carbono; el caso del vapor de agua aún es peor, ya que la molécula al ser polar tiende a establecer puentes de hidrógeno, lo que aún reduce más la idealidad. Dentro de los gases orgánicos, el que tendrá un comportamiento más ideal será el metano perdiendo idealidad a medida que se engrosa la cadena de carbono. Así, el butano es de esperar que tenga un comportamiento ya bastante alejado de la idealidad. Esto es porque cuanto más grande es la partícula constituyente del gas, mayor es la probabilidad de colisión e interacción entre ellas, factor que hace disminuir la idealidad. Algunos de estos gases se pueden aproximar bastante bien mediante las ecuaciones ideales, mientras que en otros casos hará falta recurrir a ecuaciones reales muchas veces deducidas empíricamente a partir del ajuste de parámetros.

También se pierde la idealidad en condiciones extremas, como altas presiones o bajas temperaturas. Por otra parte, la concordancia con la idealidad puede aumentar si trabajamos a bajas presiones o altas temperaturas. También por su estabilidad química.

Comportamiento de los gases

Para el comportamiento térmico de partículas de la materia existen cuatro cantidades medibles que son de gran interés: presión, volumen, temperatura y masa de la muestra del material (o mejor aún cantidad de sustancia, medida en moles).

Cualquier gas se considera como un fluido, porque tiene las propiedades que le permiten comportarse como tal.

Sus moléculas, en continuo movimiento, colisionan elásticamente entre sí y contra las paredes del recipiente que contiene al gas, contra las que ejercen una presión permanente. Si el gas se calienta, esta energía calorífica se invierte en energía cinética de las moléculas, es decir, las moléculas se mueven con mayor velocidad, por lo que el número de choques contra las paredes del recipiente aumenta en número y energía. Como consecuencia la presión del gas aumenta, y si las paredes del recipiente no son rígidas, el volumen del gas aumenta.

Un gas tiende a ser activo químicamente debido a que su superficie molecular es también grande, es decir, al estar sus partículas en continuo movimiento chocando unas con otras, esto hace más fácil el contacto entre una sustancia y otra, aumentando la velocidad de reacción en comparación con los líquidos o los sólidos.

Para entender mejor el comportamiento de un gas, siempre se realizan estudios con respecto al gas ideal, aunque éste en realidad nunca existe y las propiedades de este son:

  • Una sustancia gaseosa pura está constituida por moléculas de igual tamaño y masa. Una mezcla de sustancias gaseosas está formada por moléculas diferentes en tamaño y masa.
  • Debido a la gran distancia entre unas moléculas y otras y a que se mueven a gran velocidad, las fuerzas de atracción entre las moléculas se consideran despreciables.
  • El tamaño de las moléculas del gas es muy pequeño, por lo que el volumen que ocupan las moléculas es despreciable en comparación con el volumen total del recipiente. La densidad de un gas es muy baja.
  • Las moléculas de un gas se encuentran en constante movimiento a gran velocidad, por lo que chocan elásticamente de forma continua entre sí y contra las paredes del recipiente que las contiene.

Para explicar el comportamiento de los gases, las nuevas teorías utilizan tanto la estadística como la teoría cuántica, además de experimentar con gases de diferentes propiedades o propiedades límite, como el UF6, que es el gas más pesado conocido.

Un gas no tiene forma ni volumen fijo; se caracteriza por la casi nula cohesión y la gran energía cinética de sus moléculas, las cuales se mueven.

Véase también

Enlaces externos


Wikimedia foundation. 2010.

Sinónimos:

Mira otros diccionarios:

  • Gas — (et) …   Kölsch Dialekt Lexikon

  • Gas — [ga:s], das; es, e: 1. a) unsichtbarer Stoff in der Form wie Luft: giftiges, brennbares, explosives Gas; einen Ballon mit Gas füllen; zu Gas werden; in der Flüssigkeit sind mehrere Gase aufgelöst. b) brennbares, zum Kochen und Heizen verwendetes… …   Universal-Lexikon

  • gas — s.m.inv. 1a. FO ogni sostanza che, a temperatura e pressione normale, è allo stato aeriforme, in contrapposizione ai solidi e ai liquidi, e non presenta forma e volume propri 1b. TS fis., chim. sostanza aeriforme che si trova al di sopra della… …   Dizionario italiano

  • Gas — (g[a^]s), n.; pl. {Gases} (g[a^]s [e^]z). [Invented by the chemist Van Helmont of Brussels, who died in 1644.] 1. An a[ e]riform fluid; a term used at first by chemists as synonymous with air, but since restricted to fluids supposed to be… …   The Collaborative International Dictionary of English

  • gas — (Palabra inventada por el científico flamenco J. B. van Helmont en el siglo XVII, sobre el lat. chaos). 1. m. Fluido que tiende a expandirse indefinidamente y que se caracteriza por su pequeña densidad, como el aire. 2. Cada uno de los gases… …   Diccionario de la lengua española

  • gas — sustantivo masculino 1. (no contable) Área: química Estado de la materia cuyas moléculas están en desorden y pueden separarse indefinidamente por la escasa atracción que existe entre ellas: El agua se convierte en gas al evaporarse. 2. (no… …   Diccionario Salamanca de la Lengua Española

  • gas — [gæs] noun gases PLURALFORM or gasses [countable, uncountable] a substance which is not solid or liquid at normal temperatures, and which usually cannot be seen: • Greenhouse gases are the direct result of pollution …   Financial and business terms

  • gas — [gas] n. pl. gases or gasses [gas′iz] [ModL, altered by Van Helmont (1577 1644), Belgian chemist (with g pronounced, as in Du, as a voiced fricative) < Gr chaos, air (see CHAOS), term used by Paracelsus] 1. the fluid form of a substance in… …   English World dictionary

  • Gas CS — Nombre (IUPAC) sistemático …   Wikipedia Español

  • Gas — Gas. Die Eigenthümlichkeit der Gase, welche elastische Flüssigkeiten, Luftarten sind, besteht in dem Bestreben der kleinsten Theilchen, sich möglichst weit von einander zu entfernen, daher üben sie auf ihre Umgebung einen allseitigen Druck aus u …   Pierer's Universal-Lexikon

  • Gas — (g[a^]s), v. t. [imp. & p. p. {Gassed} (g[a^]st); p. pr. & vb. n. {Gassing}.] 1. (Textiles) To singe, as in a gas flame, so as to remove loose fibers; as, to gas thread. [Webster 1913 Suppl.] 2. To impregnate with gas; as, to gas lime with… …   The Collaborative International Dictionary of English


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.