Grados de libertad (física)

Grados de libertad (física)

Para otros usos de este término, véase Grados de libertad.

El número de grados de libertad en un sistema físico se refiere al número mínimo de números reales que es necesario especificar para determinar completamente el estado físico. El concepto aparece en mecánica clásica y en termodinámica.

En mecánica, por cada partícula libre del sistema y por cada dirección en la que ésta es capaz de moverse existen dos grados de libertad, uno relacionado con la posición y el otro con la velocidad.

El número de grados de libertad de un sistema cuando existen ligaduras entre las partículas, será el número total de variables, menos el número de ligaduras que las relacionan.

Obsérvese que esta definición no coincide ni con la definición de grados de libertad que se usa en ingeniería de máquinas, ni con la que se usa en ingeniería estructural.

Contenido

Grados de libertad en mecánica clásica

En mecánica hamiltoniana el número de grados de libertad de un sistema coincide con la dimensión topológica del espacio de fases del sistema. En mecánica lagrangiana el número de grados de libertad coincide la dimensión del fibrado tangente del espacio de configuración del sistema.

Un conjunto de N partículas intereactuantes pero moviéndose sin restricciones en el espacio tridimensional tiene 6N grados de libertad (tres coordenadas de posición y tres velocidades). Si el conjunto de particulas se mueve sobre un estado d-dimensional el número de grados de libertad es 2d·N.

Si existen k ligaduras entre las partículas el número de grados de libertad será

 GL = 6N - k \le 6N

Ejemplos

  • Partícula libre

Una sola partícula libre tiene 6 grados de libertad

  • Partícula obligada a moverse sobre una superficie

La superficie supone una ligadura para las posiciones, ya que debe cumplirse

F(x,y,z) = 0\,

y otra para las velocidades, ya que la velocidad debe ser en todo momento tangente a la superficie, por lo que

0 = \mathbf{v}\cdot\mathbf{n} = \mathbf{v}\cdot\nabla F = v_x \frac{\partial F}{\partial x} + v_y \frac{\partial F}{\partial y} + v_z \frac{\partial F}{\partial z}

por tanto el número de grados de libertad es

GL = 6 - 2=4\,

valor que coincide con lo que se espera para un movimiento en una variedad bidimensional.

  • Dos partículas en los extremos de una varilla

Por tener dos partículas tenemos 12 grados de libertad, pero la condición de que la distancia entre las partículas sea fijada supone una ligadura para sus posiciones y otra para sus velocidades, lo que nos da

GL = 12 - 2=10\,

Estos grados de libertad se pueden representar por variables diferentes (las tres coordenadas del centro de la varilla y los dos ángulos que dan la orientación de ésta, con sus correspondientes velocidades).

  • Un sólido rígido

Un sólido formado por N partículas posee en principio 6N variables. Pero el número de ligaduras es:

    • Para la primera partícula, ninguna
    • Para la segunda partícula, 2 (la distancia a la primera y su velocidad, como en el caso de dos partículas unidas por una varilla)
    • Para la tercera partícula, 4 (las distancias a las dos primeras partículas y sus correspondientes velocidades)
    • Para la cuarta y siguientes, 6, ya que una vez dada la distancia a tres partículas, la distancia a todas las demás está también fijada).

Por tanto el número de grados de libertad es

GL = 6N - 2 - 4 - 6(N-3) = 12\,

que se pueden representar por seis variables (la posición del centro de masa y los ángulos de Euler) y sus correspondientes velocidades.


En general, no todas las ligaduras pueden representarse mediante una reducción en el número de variables (aunque sí en el número de variables independientes). Cuando tenemos un sistema en el cual las ligaduras no son integrables, se dice que el sistema es no holónomo.

Es importante señalar que la convención para contabilizar los grados de libertad en ingeniería mecánica es diferente, siendo justamente la mitad que en los casos (1) y (2).

Grados de libertad en mecánica estadística

Teorema de equipartición de la energía

Artículo principal: Teorema de equipartición

En el límite clásico de la mecánica estadística la energía de un sistema en equilibrio térmico con n grados de libertad cuadráticos e independientes es:

U = \langle E \rangle = n\frac{k_B T}{2}

Donde:

k_B\, es la constante de Boltzmann
T\, es la temperatura
n\, es el número de grados de libertad del sistema
Obtenido de "Grados de libertad (f%C3%ADsica)"

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Grados de libertad — Saltar a navegación, búsqueda Los Grados de libertad pueden tener diferentes significados: Grados de libertad (estadística); Grados de libertad (física), de un sistema dinámico.; Grados de libertad (ingeniería), de un mecanismo o una estructura;… …   Wikipedia Español

  • Grado de libertad (física) — Para otros usos de este término, véase Grados de libertad. El número de grados de libertad en un sistema físico se refiere al número mínimo de números reales que es necesario especificar para determinar completamente el estado físico. El concepto …   Wikipedia Español

  • Libertad (desambiguación) — Libertad puede referirse a: conceptos: libertad; libertad académica o libertad de cátedra, en la educación superior es la opción de elegir lo que enseñarará o investigará sin censura institucional; libertad asintótica, en física, propiedad de… …   Wikipedia Español

  • Física computacional — Se denomina física computacional a una rama de la física que se centra en la elaboración de modelos por ordenador de sistemas con muchos grados de libertad. En general, se efectúan modelos microscópicos en los cuales las partículas obedecen a una …   Wikipedia Español

  • Física computacional — Se denomina Física computacional a una rama de esta ciencia que se centra en la elaboración de modelos por ordenador de sistemas con muchos grados de libertad. En general, se efectúan modelos microscópicos en los cuales, las partículas obedecen a …   Enciclopedia Universal

  • Grado de libertad (ingeniería) — Para otros usos de este término, véase Grados de libertad. El número de grados de libertad en ingeniería se refiere al número mínimo de parámetros que necesitamos especificar para determinar completamente la velocidad de un mecanismo o el número… …   Wikipedia Español

  • Campo (física) — Saltar a navegación, búsqueda En física, un campo es cualquier magnitud física que presenta cierta variación sobre una región del espacio. En ocasiones campo se refiere a una abstracción matemática para estudiar la variación de una cierta… …   Wikipedia Español

  • Ligadura (física) — En física, se denomina ligadura a las condiciones sobre coordenadas de un sistema que están sujetas a restricciones independientes de las fuerzas actuantes. En cualquier sistema dinámico aparecen este tipo de ligaduras que constriñen el… …   Wikipedia Español

  • Problemas no resueltos de la física — Saltar a navegación, búsqueda En física existen los denominados problemas no resueltos. Algunos de ellos son teóricos, es decir, problemas no resueltos que las teorías aceptadas parecen incapaces de explicar, mientras que otros son experimentales …   Wikipedia Español

  • Technicolor (física) — Las teorías Technicolor son modelos de física Más allá del modelo estándar que nos llevan a la ruptura de la simetría electrodébil, el mecanismo por el cual las partículas elementales adquieren masa. Las primeras teorías technicolor se basaron en …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.