Anillo conmutativo


Anillo conmutativo

Anillo conmutativo

En teoría de anillos (una rama del álgebra abstracta), un anillo conmutativo es un anillo (R, +, ·) en el que la operación de multiplicación · es conmutativa; es decir, si para cualesquiera a, bR, a·b = b·a.

Si adicionalmente el anillo tiene un elemento unitario 1 tal que 1a = a = a1 para todo a, entonces el anillo se denomina anillo conmutativo unitario.

La rama de la teoría de anillos que estudia los anillos conmutativos se denomina álgebra conmutativa.

Ejemplos

  • El ejemplo más importante es tal vez el de los números enteros con las operaciones usuales de suma y multiplicación, ambas conmutativas. Este anillo usualmente se denota por Z, por la palabra alemana Zahlen (números).
  • Los números racionales, reales, y complejos forman anillos conmutativos con las operaciones usuales; más aún, son campos.
  • Más generalmente, todo campo es un anillo conmutativo por definición.
  • El mejor ejemplo de un anillo no conmutativo es el conjunto de matrices cuadradas de 2×2 con valores reales. Por ejemplo, la multiplicación matricial
\begin{bmatrix}
1 & 1\\
0 & 1\\
\end{bmatrix}

\begin{bmatrix}
1 & 1\\
1 & 0\\
\end{bmatrix}=
\begin{bmatrix}
2 & 1\\
1 & 0\\
\end{bmatrix}
da un resultado distinto que si se invierte el orden de los factores:
\begin{bmatrix}
1 & 1\\
1 & 0\\
\end{bmatrix}
\begin{bmatrix}
1 & 1\\
0 & 1\\
\end{bmatrix}=
\begin{bmatrix}
1 & 2\\
1 & 1\\
\end{bmatrix}.
  • Si n > 0 es un entero, el conjunto Zn de enteros módulo n forma un anillo conmutativo con n elementos.
  • Si R es un anillo conmutativo, el conjunto de polinomios de variable X con coeficientes en R forma un nuevo anillo conmutativo, denotado por R[X].
  • El conjunto de números racionales de denominador impar forma un anillo conmutativo, estrictamente contenido en el anillo Q de los racionales, y que contiene propiamente al Z de los enteros.

Propiedades

  • Si f : RS es un homomorfismo de anillos entre R y S, S es conmutativo, y f es inyectiva (esto es, un monomorfismo), R también debe ser conmutativo, pues f(a·b) = f(af(b) = f(bf(a) = f(b·a).
  • Si f : RS es un homomorfismo de anillos entre R y S, con R es conmutativo, la imagen f(R) de R será también conmutativa; en particular, si f es sobreyectiva (esto es, un epimorfismo), S será conmutativo también.

El mayor interés de los anillos conmutativos está en cuando además son unitarios, es decir, los anillos conmutativos unitarios.

Obtenido de "Anillo conmutativo"

Wikimedia foundation. 2010.

Mira otros diccionarios:

  • Anillo conmutativo — Un anillo (no necesariamente unitario) se denomina anillo conmutativo si la operación producto ( ) cumple la propiedad conmutativa, esto es, si se cumple que cualesquiera que sean . Por lo tanto, en un anillo conmutativo, el centro del anillo… …   Enciclopedia Universal

  • Anillo conmutativo unitario — Un anillo es anillo conmutativo unitario si es anillo conmutativo y además es anillo unitario. Los anillos conmutativos y unitarios son de enorme inportancia en Álgebra, particularmente en Álgebra Conmutativa y en Geometría Algebraica. A ellos… …   Enciclopedia Universal

  • Anillo local — Saltar a navegación, búsqueda En Álgebra abstracta, los anillos locales son ciertos anillos comparativamente simples y que sirven para describir el comportamiento local de las funciones definidas sobre variedades algebraicas o variedades… …   Wikipedia Español

  • Anillo de fracciones — Saltar a navegación, búsqueda En Álgebra conmutativa son interesantes a menudo los anillo de fracciones que constituyen una generalización del concepto de cuerpo de fracciones. Construcción del anillo de fracciones de un anillo Sea un anillo… …   Wikipedia Español

  • Anillo primo — Saltar a navegación, búsqueda En álgebra abstracta, un anillo no trivial R es un anillo primo si para dos elementos cualesquiera a y b de R, tales que arb = 0 para todo r in R, entonces a = 0 o b = 0. Propiedades Un anillo conmutativo es primo si …   Wikipedia Español

  • Anillo ordenado — Saltar a navegación, búsqueda Definiciones En álgebra abstracta, un anillo ordenado es un anillo conmutativo R con un orden total tal que si y , entonces si …   Wikipedia Español

  • Anillo (matemática) — En álgebra, un anillo es una estructura algebraica formada por un conjunto (A), y dos operaciones: suma y producto; de modo que (A,+) es un grupo conmutativo con elemento neutro (que designamos 0), y el producto es asociativo y tiene la propiedad …   Wikipedia Español

  • Anillo noetheriano — En álgebra, un anillo conmutativo es noetheriano (o tiene la propiedad de Noether) si todo ideal del anillo es finitamente generado …   Enciclopedia Universal

  • Anillo noetheriano — Saltar a navegación, búsqueda En álgebra, un anillo R es noetheriano por la izquierda si sus ideales por la izquierda satisfacen la condición de cadena ascendente. Diremos que un anillo es noetheriano si es noetheriano por la izquierda y por la… …   Wikipedia Español

  • Anillo de división — Saltar a navegación, búsqueda Un anillo de división, o cuerpo torcido, o cuerpo skew, o cuerpo no conmutativo, es un anillo unitario de manera que todo elemento es invertible, es decir, si R es el anillo unitario y U(R) representa a los elementos …   Wikipedia Español


Compartir el artículo y extractos

Link directo
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.